Search results for "Standard probability space"

showing 7 items of 7 documents

Maximal regularity via reverse Hölder inequalities for elliptic systems of n-Laplace type involving measures

2008

In this note, we consider the regularity of solutions of the nonlinear elliptic systems of n-Laplacian type involving measures, and prove that the gradients of the solutions are in the weak Lebesgue space Ln,∞. We also obtain the a priori global and local estimates for the Ln,∞-norm of the gradients of the solutions without using BMO-estimates. The proofs are based on a new lemma on the higher integrability of functions.

Pure mathematicsNonlinear systemLemma (mathematics)Laplace transformElliptic systemsGeneral MathematicsMathematical analysisMathematicsofComputing_NUMERICALANALYSISStandard probability spaceA priori and a posterioriType (model theory)Mathematical proofMathematics
researchProduct

A space on which diameter-type packing measure is not Borel regular

1999

We construct a separable metric space on which 1-dimensional diameter-type packing measure is not Borel regular.

CombinatoricsBorel equivalence relationRiesz–Markov–Kakutani representation theoremApplied MathematicsGeneral MathematicsRadon measureStandard probability spaceBaire measureBorel setBorel measureMeasure (mathematics)MathematicsProceedings of the American Mathematical Society
researchProduct

Extensions of cocycles for hyperfinite actions and applications

1997

Given a countable, hyperfinite, ergodic and measure-preserving equivalence relationR on a standard probability space (X, ℬ, μ) and an elementW of the normalizerN (R) ofR, we investigate the problem of extendingR-cocycles to\(\bar R\), where\(\bar R\) is the relation generated byR andW. As an application, we obtain that for a Bernoulli automorphism the smallest family of natural factors in sense of [6] consists of all factors. Given an automorphism which is embeddable in a measurable flow and a compact, metric group, we show that for a typical cocycle we cannot lift the whole flow to the centralizer of the corresponding group extension.

CombinatoricsGroup extensionGeneral MathematicsErgodic theoryCountable setStandard probability spaceAutomorphismEquivalence (measure theory)Hyperfinite setCentralizer and normalizerMathematicsMonatshefte für Mathematik
researchProduct

A singular elliptic equation and a related functional

2021

We study a class of Dirichlet boundary value problems whose prototype is [see formula in PDF] where 0 < p < 1 and f belongs to a suitable Lebesgue space. The main features of this problem are the presence of a singular term |u|p−2u and a datum f which possibly changes its sign. We introduce a notion of solution in this singular setting and we prove an existence result for such a solution. The motivation of our notion of solution to problem above is due to a minimization problem for a non–differentiable functional on [see formula in PDF] whose formal Euler–Lagrange equation is an equation of that type. For nonnegative solutions a uniqueness result is obtained.

0209 industrial biotechnologyPure mathematicsControl and OptimizationSemilinear equation010102 general mathematicsSingular termExistence02 engineering and technologyType (model theory)01 natural sciencesDirichlet distributionComputational MathematicsElliptic curvesymbols.namesake020901 industrial engineering & automationControl and Systems EngineeringsymbolsStandard probability spaceBoundary value problemUniquenessSingularity at u = 0Uniqueness0101 mathematicsMathematicsSign (mathematics)
researchProduct

Anisotropic -Laplacian equations when goes to

2010

Abstract In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p -Laplacian equation with respect to a group of variables and as the q -Laplacian equation with respect to the other variables ( 1 p q ), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1 , showing that they converge to a function u , which is almost everywhere finite, regardless of the size of the datum f . Moreover, we prove that this u is the unique solution of a limit problem having the 1-Laplacian operator with respect to the firs…

Dirichlet problemGroup (mathematics)Applied MathematicsMathematical analysisp-LaplacianStandard probability spaceAlmost everywhereFunction (mathematics)Limit (mathematics)Laplace operatorAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

On density and π-weight of Lp(βN,R, μ)

2012

In Integration Theory, it is important to establish the separability or not of Lebesgue spaces of the type Lp, with 1 ≤ p < +∞. In general, the usual proof of this type of results for certain Lebesgue spaces, is conducted through methods of Real Analysis. In this work, we use some concepts and methods of pure General Topology in proving the non-separability of a particular Lebesgue space. Further, we provide some estimates for density and π-weight of such a space.

Pure mathematicsselective separability Lebesgue spaceselective separabilitylcsh:MathematicsseparabilityMathematical analysis[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA]lcsh:QA299.6-433Separabilitylcsh:AnalysisSpace (mathematics)lcsh:QA1-939[MATH.MATH-GN] Mathematics [math]/General Topology [math.GN]Lebesgue spaceStandard probability spaceGeometry and TopologySelective separabilityMathematics
researchProduct

Quasilinear elliptic equations with singular quadratic growth terms

2011

In this paper, we deal with positive solutions for singular quasilinear problems whose model is [Formula: see text] where Ω is a bounded open set of ℝN, g ≥ 0 is a function in some Lebesgue space, and γ &gt; 0. We prove both existence and nonexistence of solutions depending on the value of γ and on the size of g.

Quadratic growthnonlinear elliptic equations; natural growth condition; vertical asymptote; measure dataApplied MathematicsGeneral MathematicsMathematical analysisOpen setmeasure dataFunction (mathematics)nonlinear elliptic equationsBounded functionvertical asymptoteStandard probability spacenatural growth conditionAsymptoteValue (mathematics)Mathematics
researchProduct